A MATHEMATICAL THEORY OF SAVING

1 Ott

stanleyOccorre chiarire che l’utilità di una decisione è un numero compreso tra 0 e 1 in quanto si definisce come la probabilità di ottenere la conseguenza migliore per effetto di una decisione.
Inoltre osservo che il lavoro di Frank Ramsey si basa sulla normalità decisionale perché ci si attende che una persona (ovvero un decisore con una durata limitata) o una nazione (ovvero un decisore con durata illimitata) si pongano il problema di quanto e quando spendere per massimizzare l’utilità individuale o nazionale rispettivamente. Purtroppo questi calcoli e questa logica sono stati soppiantati, non solo in Italia, da decisioni politiche che sarebbe stato impossibile prevedere in quanto fuori della logica di massimizzare l’utilità. Ad esempio da più di venti anni le decisioni politiche sono state tali da minimizzare l’utilità con una massimizzazione dell’indebitamento nazionale. Quindi si tratta, evidentemente, di una politica nell’interesse di pochi contro l’interesse nazionale che porta all’impoverimento progressivo della nazione.
Propongo la mia traduzione di questo articolo di Frank Plumpton Ramsey in quanto è una esposizione chiara della soluzione di problemi complessi in modo razionale. Così avrete la possibilità di confrontarla con le incoerenze ed i danni dei politici perpetrati alla nostra nazione ed a noi individualmente.
Il testo originale è stato pubblicato in The Economic Journal Vol. 38, No. 152. (Dic. 1928) pp. 543 – 559, vol. XXXIII – Blackwell Publishing for the Royal Economic Society ed è reperibile sul sito http://www.jstor.org/stable/2224098.

Questa è la traduzione.

UNA TEORIA MATEMATICA DEL RISPARMIO

I

Il primo problema che mi propongo di affrontare è questo: una nazione quanto deve risparmiare del suo reddito? Per rispondere a questo si ottiene una semplice regola valida in condizioni di generalità sorprendente: la regola, che sarà ulteriormente chiarita nel seguito, si sviluppa come segue.

Il tasso di risparmio moltiplicato per l’utilità marginale del denaro deve essere sempre pari all’importo per cui il tasso netto totale di godimento dell’utilità rimane ad disotto del tasso massimo di godimento .

Per giustificare questa regola è, ovviamente, necessario assumere varie ipotesi semplificatrici: dobbiamo supporre che la nostra comunità proceda per sempre, senza cambiare nei numeri né nella sua capacità di godimento né nella sua avversione al lavoro; che godimenti e i sacrifici in tempi diversi possano essere calcolati in modo indipendente e sommati; e che non siano introdotte nuove invenzioni o miglioramenti nell’organizzazione eccetto quelli che possono essere considerati come condizionati esclusivamente da un accumulo di ricchezza. 1

Dovrebbe forse essere sottolineato un punto, più in particolare; si presume che non diminuiamo i godimenti successivi rispetto a quelle precedenti, una pratica che è eticamente indifendibile e deriva solo dalla debolezza della fantasia; noi includeremo, comunque, nella sezione II un tasso di sconto in alcune delle nostre indagini.

Noi ignoriamo anche del tutto considerazioni distributive, assumendo, infatti , che il modo in cui il consumo e lavoro sono distribuiti tra i membri della comunità dipende unicamente dai loro importi totali, in modo che la soddisfazione totale è funzione unicamente di questi importi complessivi.

Oltre a questo , trascuriamo le differenze tra i diversi tipi di beni e diversi tipi di lavoro, e supponiamo questi siano espressi in termini di criteri prefissati, in modo che possiamo parlare semplicemente di quantità di capitali, di consumo e di lavoro senza discutere le loro forme particolari.

1 Ovvero devono essere tali che non avverrebbero senza un certo grado di accumulo, ma potrebbe essere previsto dato il relativo grado .

Non devono essere esclusi il commercio estero, prestiti e mutui, a condizione che assumiamo che le nazioni straniere sono in uno stato stabile, in modo che le possibilità di accordarsi con esse può essere inclusa nelle condizioni di produzione costante. Noi, tuttavia, respingiamo la possibilità che uno stato di indebitamento progressivo con l’estero continui per sempre.

Infine , dobbiamo presumere che la comunità sarà sempre governata dagli stessi  stimoli per quanto riguarda l’accumulo, in modo che non vi sia alcuna possibilità che i nostri risparmi vengano egoisticamente consumati da una generazione successiva; e che non si verifichino sventure da spazzare via gli accumuli in qualsiasi momento nel futuro pertinente.

Quindi indichiamo con x(t) e a(t) i tassi totali di consumo e di lavoro della nostra comunità, e con c (t) il suo capitale al tempo t. Il suo reddito è assunto come una funzione generale delle quantità di lavoro e capitale, e sarà chiamato f ( a, c ); abbiamo poi, dal momento che il risparmio più il consumo deve essere uguale reddito,

Schermata 2014-01-06 alle 18.46.22

Ora indichiamo con U( x ) il tasso totale di utilità di un tasso di consumo x; e con V( a) il tasso totale di disutilità di un tasso di lavoro a, e chiameremo le relative aliquote marginali u (x) e v (a); così che

Schermata 2014-01-06 alle 18.46.48

Supponiamo , come al solito, che u(x) non sia mai in aumento e che v(a) non diminuisca mai.

Ora dobbiamo introdurre un concetto di grande importanza nella nostra discussione. Supponiamo di avere un dato capitale c, e non lo stiamo né aumentando né diminuendo. Allora U(x) – V(a) denota il nostro godimento netto per unità di tempo, e andremo a renderlo massimo, a condizione che la nostra spesa x sia uguale a quella che possiamo realizzare con il lavoro a e il capitale a c. Il tasso di godimento risultante U(x) – V(a) sarà una funzione di c, e crescerà, fino ad certo punto, all’aumentare di c, poiché con più capitale possiamo avere più godimento.

Questo aumento del tasso di godimento con la quantità di capitale può, tuttavia, fermarsi per uno dei due motivi. Potrebbe, in primo luogo, accadere che un ulteriore incremento di capitale non ci permetterebbe di aumentare sia il nostro reddito sia il nostro svago; o, in secondo luogo, potremmo aver raggiunto il tasso massimo concepibile di godimento, e quindi non avremmo alcuna utilità per il maggiore reddito o per il maggiore svago.

In entrambi i casi un certo capitale finito ci darebbe il maggior tasso di godimento economicamente ottenibile, sia che questo sia o non sia il massimo tasso concepibile.

D’altra parte, il tasso di godimento non può mai smettere di aumentare, all’aumentare del capitale. Vi sono poi due possibilità logiche: o il tasso di godimento aumenterà fino all’infinito, o si avvicinerà asintoticamente ad un certo limite finito. Il primo di questi casi si può escludere per il fatto che cause economiche da sole non potrebbero mai darci più di un certo tasso finito di godimento (chiamato sopra il tasso massimo concepibile). Resta il secondo caso, in cui il tasso di godimento si avvicina ad un limite finito, che può essere o può non essere uguale al tasso massimo concepibile. Questo limite si deve chiamare il tasso massimo ottenibile di godimento, anche se non può, a rigore, essere ottenuto, ma solo approssimato indefinitamente.

Quello che abbiamo in vari casi chiamato il tasso massimo ottenibile di godimento o l’utilità chiameremo per brevità Felicità o B. E in tutti i modi possiamo vedere che la comunità deve risparmiare abbastanza o per raggiungere la Felicità dopo un tempo finito, o almeno per approssimarla in un tempo indeterminato. Perché solo in questo modo è possibile raggiungere l’importo per cui il godimento ricade nell’intorno di una felicità somma nel tempo una quantità finita; in modo che se dovesse essere possibile raggiungere la felicità o avvicinarla in un tempo indeterminato, questo sarà infinitamente più desiderabile di ogni altra direzione di azione.

Ed è destinata ad essere possibile, dal momento che mettendo da parte una piccola somma ogni anno siamo in grado nel tempo di aumentare il nostro capitale di una qualsiasi misura desiderata . 1

Abbastanza deve quindi essere risparmiato per raggiungere o approssimarsi alla felicità in un qualche periodo di tempo, ma questo non significa che tutto il nostro reddito deve essere risparmiato. Più viene risparmiato più presto raggiungeremo una felicità, ma meno piacere avremmo adesso, e dovremmo mettere l’una cosa contro l’altra. Keynes mi ha mostrato che la norma che regola la quantità da risparmiare può essere determinata immediatamente da queste considerazioni. Ma prima di spiegare la sua tesi sarà meglio sviluppare quelle equazioni che possono essere utilizzate nei problemi più generali che considereremo più avanti .

1 Così com’è questo argomento è incompleto, in quanto in quest’ultimo caso sopra considerato la felicità era il valore limite, con un capitale che tende all’infinito, del godimento ottenibile spendendo tutto il nostro reddito, e quindi non effettuando alcun accantonamento per un ulteriore aumento del capitale. La lacuna può essere facilmente riempita osservando che per risparmiare £ 1 / n nell’anno n-esimo sarebbe sufficiente aumentare il capitale sociale all’infinito (dal momento che Σ 1 / n è divergente), e che la perdita di reddito (£ 1 / n ) si ridurrebbe allora a zero, in modo che i valori limite di reddito e le spese sarebbero gli stessi .

La prima di queste risulta dall’uguagliare la disutilità marginale del lavoro in qualsiasi momento al prodotto della efficienza marginale del lavoro con l’utilità marginale del consumo in quel momento,

ovveroSchermata 2014-01-06 alle 18.48.00

La seconda uguaglia il vantaggio derivato da un incremento Δx di consumo al tempo t, con quello derivante dal rinviarlo per un periodo di tempo infinitesimale Δt , che aumenterà il suo valore di Schermata 2014-01-06 alle 18.48.23, dal momento che Schermata 2014-01-06 alle 18.48.41           dà il tasso di interesse guadagnato dall’attesa.

Questo dà

Schermata 2014-01-06 alle 18.48.53

o al limite

Schermata 2014-01-06 alle 18.49.04

Questa equazione indica che u(x), l’utilità marginale del consumo, scende proporzionalmente ad un tasso dato dal tasso di interesse. Di conseguenza x aumenta continuamente a meno che o fino a che o Schermata 2014-01-06 alle 18.48.41 o u (x) si annulla, nel qual caso è facile vedere che la felicità  deve

essere stata raggiunta.

Le equazioni ( 1 ) , ( 2 ) e ( 3) sono sufficienti a risolvere il problema purché conosciamo c0, il capitale dato con cui la nazione inizia a t = 0, l’altra “condizione iniziale” essendo fornita dalle considerazioni riguardanti il comportamento della funzione per t → ∞ .

Per risolvere le equazioni procediamo come segue:  notando che x , a e c sono tutte funzioni di una variabile indipendente, cioè il tempo,

abbiamo

Traduzione Schermata 2014-01-06 alle 18.49.25

Di conseguenza , integrando per parti

Traduzione Schermata 2014-01-06 alle 18.51.48

o

Schermata 2014-01-06 alle 18.52.59

Ora dobbiamo individuare K con quello che abbiamo chiamato B, o felicità.

Ciò è più facilmente fatto iniziando in un modo diverso.

Schermata 2014-01-06 alle 18.53.16

rappresenta l’importo per cui il godimento è di poco inferiore alla felicità integrato nel tempo; questo è (o può essere reso) finito, e il nostro problema è quello di minimizzarlo.

Se applichiamo il calcolo delle variazioni da subito, usando l’equazione ( 1 ), otteniamo di nuovo le equazioni ( 2 ) e ( 3); ma se, invece di questo, prima cambiamo la variabile indipendente con c, otteniamo una grande semplificazione. Il nostro integrale diventa

Traduzione Schermata 2014-01-06 alle 18.53.31

Ora, in questa x ed a sono funzioni completamente arbitrarie di c, e per minimizzare l’integrale dobbiamo semplicemente minimizzare l’integrando uguagliando a zero le sue derivate parziali. Prendendo la derivata rispetto a x si ottiene:

Traduzione Schermata 2014-01-06 alle 18.55.37

o , come abbiamo detto all’inizio,

il tasso di risparmio moltiplicato per dell’utilità marginale del consumo deve essere sempre uguale alla felicità meno il tasso effettivo di utilità goduta.

Keynes, al quale sono grato per molti altri suggerimenti, mi ha mostrato che questo risultato può anche essere ottenuto mediante il seguente semplice ragionamento.

Supponiamo che in un anno dovessimo spendere £ x e risparmiare £ z .

Allora il vantaggio di acquistare da un extra di £ 1 spesa è u (x), l’utilità marginale del denaro, e questo deve essere uguale al sacrificio imposto risparmiando £ 1 in meno.

1 Il limite superiore non sarà ∞ , ma il minimo capitale con cui può essere ottenuta la felicità, se questo è finito. c aumenta costantemente con t, ad un certo tasso fino a che l’integrando svanisce , così che la trasformazione è ammissibile.

Risparmiare 1 £ in meno nell’anno significherà che risparmieremo solo £ z in 1 + 1 / z anni, non, come prima, in un anno. Di conseguenza, saremo in tempo 1 +1 / z anni esattamente dove avremmo dovuto essere nel tempo di un anno, e tutto l’andamento del nostro approccio alla felicità sarà posticipato di 1 / z anni, in modo che godremo 1 / z di un anno in meno di felicità e 1 / z anni di più al nostro attuale tasso.

Il sacrificio è, dunque,

Schermata 2014-01-06 alle 18.57.49

 

Uguagliandolo ad u ( x ), otteniamo di nuovo l’equazione ( 5 ), se sostituiamo z  con   Schermata 2014-01-06 alle 18.58.07     , il suo valore limite.

Purtroppo questo semplice ragionamento non può essere applicato quando prendiamo in considerazione l’attualizzazione, e pertanto ho mantenuto le mie equazioni ( 1) – ( 4) , che possono essere facilmente estese per affrontare i problemi più complessi.

La caratteristica più notevole della regola è che è del tutto indipendente dalla funzione di produzione f(a , c), tranne che nella misura in cui ciò determina la felicità, il tasso massimo di utilità ottenibile.

In particolare l’importo che dovremmo risparmiare di un determinato reddito è del tutto indipendente dall’attuale tasso di interesse, a meno che questo sia in realtà pari a zero. Il carattere paradossale di questo risultato risulterà in una certa misura mitigato più avanti, quando troviamo che se il futuro è scontato ad un tasso ρ costante e il tasso di interesse è costante e pari a r, la quota di reddito da risparmiare è una funzione del rapporto ρ / r . Se ρ = 0 tale rapporto è 0 ( a meno che anche r sia 0) e la percentuale da risparmiare è quindi indipendente da r.

Il tasso di risparmio che la regola impone è notevolmente superiore a quello che chiunque normalmente suggerirebbe, come si può vedere dalla tabella seguente, che viene presentata solo come un esempio.

Traduzione Schermata 2014-01-06 alle 18.58.28

Se trascuriamo le variazioni nella quantità di lavoro, l’importo che deve essere risparmiato su un reddito familiare di £ 500 sarebbe di circa £ 300. Perché allora la felicità meno tasso effettivo di utilità = 8-3 = 5 . Risparmio = £ 300 e l’utilità marginale del consumo di £ 200 = circa 1 / 60 £ . ( Da £ 150 a £ 300 U (x) = 13x/300 -3 – x2 / 15000, che corrisponde approssimativamente ad una parabola, così che u (x) = 13/300 – x/7500 = 1/60 se x = 200.)

Vale la pena soffermarsi un attimo a considerare quanto le nostre conclusioni sono influenzate dalle considerazioni che le nostre ipotesi semplificatrici ci hanno costretto a trascurare. Il probabile aumento della popolazione costituisce una ragione per risparmiare ancora di più, e così anche la possibilità che le invenzioni future metteranno il livello di felicità più in alto di quello che appare adatto al presente. D’altra parte, la probabilità che le invenzioni e i miglioramenti nell’organizzazione futuri sono atti a rendere gli introiti ottenibili con minor sacrificio di quello attuale è una ragione per risparmiare di meno. L’influenza delle invenzioni così opera in due modi opposti: ci fornisce nuovi bisogni che possiamo soddisfare meglio se abbiamo risparmiato in precedenza, ma anche aumenta la nostra capacità produttiva e rende il risparmio precedente meno pressante.

Il fattore più grave trascurato è la possibilità di future guerre e terremoti che distruggono le nostre accumulazioni. Questi non possono essere adeguatamente calcolati perché col determinare un tasso di interesse molto basso per lunghi periodi, dal momento che possono rendere il tasso di interesse effettivo negativo, distruggono come fanno non solo gli interessi, ma anche il capitale.

II

Propongo ora di considerare che il compenso del capitale e del lavoro siano costanti e indipendenti, 1 in modo che

f (a , c) = pa + rc

dove p, il tasso dei salari, e r, il tasso di interesse, sono costanti .

Questa ipotesi ci permetterà

(a) Di rappresentare la nostra precedente soluzione con un semplice diagramma ;

(b) Di estenderla al caso di un individuo che vive solo un tempo finito;

(c) Di estenderla per includere il problema in cui i futuri valori di utilità e di disutilità siano attualizzati ad un tasso costante.

1 Vale la pena notare che nella maggior parte di (a) si richiede solo l’indipendenza dei rendimenti, e non la costanza, e che in nessun luogo abbiamo davvero bisogno che i salari siano costanti, ma queste ipotesi sono fatte per semplificare del tutto la formulazione. Sono meno assurdi se lo stato è uno fra quelli che avanzano lentamente, in modo che i tassi di interesse e i salari sono in gran parte indipendenti da ciò che il nostro stato particolare risparmia e guadagna .

Nella nostra nuova ipotesi il reddito della comunità si divide in due parti ben definite, pa ed rc, che sarà conveniente chiamarle rispettivamente introito da guadagno e introito da rendita .

( a) L’equazione ( 2 ), che ora leggiamo

v (a) = pu( x )

determina a come funzione della sola x, e possiamo utilmente porre

y = x – pa = consumo – redditi da lavoro

w ( y) = u ( x ) = v ( a) / p

W ( y) = ∫ w (y) dy = ∫ (u (x) dx – v (a) da) = U (x) – V (a)

W ( y) può essere chiamata utilità totale e w (y) l’utilità marginale del reddito da capitale, dal momento che sono utilità totali e marginali derivanti dal possesso di una rendita y disponibile per il consumo.

L’equazione ( 5 ), ora ci dà

Traduzione Schermata 2014-01-06 alle 19.04.25

il che significa che il punto ( rc , B) si trova sulla tangente in y alla curva z = W (y) .

La figura ( 1 ) mostra la curva z = W ( y) , che raggiunge sia il valore B ad un valore y1 finito (il caso mostrato in figura) oppure vi si avvicina asintoticamente per y → ∞ .

Al fine di determinare la quantità di una data rendita rc che deve essere risparmiata, prendiamo il punto P, ( rc , B), sulla linea z = B, e da esso tiriamo una tangente alla curva (non z = B , che sarà sempre una tangente, ma l’un’altra) . Se l’ascissa di Q , il punto di contatto, è y, una quantità y della rendita verrebbe consumata, e il resto, rc – y, verrebbe risparmiata. Naturalmente y può essere negativa, il che significherebbe che non solo l’intera rendita sarà risparmiata, ma anche una parte del reddito da lavoro.

E ‘ facile vedere che ci deve essere sempre un tale tangente, perché la curva z = W (y) avrà una tangente o asintoto y = – η , dove η è il più grande eccesso di introiti rispetto al consumo compatibile con il mantenimento dell’esistenza.

Questa regola determina la quantità di un determinato reddito che dovrebbe essere spesa, ma non ci dice a quanto il nostro reddito ammonterà dopo un certo lasso di tempo . Questo è ottenuto dall’equazione ( 3 ) , che ora ci dà

Traduzione Schermata 2014-01-06 alle 19.06.03

Qui A = w (y0), dove y0 è il valore di y per t = 0 determinato come ascissa di Q , dove P è (rc0,B) .

Supponiamo, allora, che vogliamo trovare il tempo impiegato ad accumulare un capitale c da un capitale iniziale c0 , assumiamo che  P sia il punto ( rc , B ) e P0 sia ( rc0 , B ). w (y) è poi la pendenza della tangente da P, e w(y ) la pendenza della tangente da P0, in modo che nel momento in questione

Traduzione Schermata 2014-01-06 alle 19.07.18

 

Traduzione 2014-01-06 alle 19.11.04

( b) Supponiamo ora che ci occupiamo di un individuo che vive solo per un tempo determinato, diciamo T anni, invece di una comunità che vive per sempre. Abbiamo ancora l’equazione (4)

Traduzione Schermata 2014-01-06 alle 19.16.05

ma K non è più uguale a B , e deve ancora essere determinata.

Per trovarla dobbiamo sapere quanto capitale il nostro uomo sente necessario lasciare ai suoi eredi; chiamiamo questo c3.

L’equazione ( 8 ) indica, come prima che y può essere trovato come l’ascissa del punto di contatto Q di una tangente tirata da ( rc , K ) ovvero P alla curva. P si trova sempre su z = K , e la sua ascissa comincia da rc0 e finisce in rc3. K si può assumere come minore di B, poiché un uomo che vive solo un tempo finito risparmierà meno di chi vive un tempo infinito, e maggiore sarà K , maggiore sarà il tasso di risparmio. Di conseguenza, z = K incontrerà la curva , diciamo in P4.

Schermata 2014-01-06 alle 20.32.34

Da entrambi P0 e P3 ci saranno due tangenti alla curva, di cui o la superiore o quella inferiore può, per quanto ne sappiamo, essere presa come determinante y0 e y3 Se, tuttavia, c3 > c0 come in fig . 2, possiamo solo prendere la tangente inferiore da P0, perché la tangente superiore dà un valore di y0 maggiore di uno dei valori di y3 , che è impossibile, in quanto y aumenta in modo continuo. Prendendo, poi , Q0 come il punto di contatto della tangente inferiore da P0, ci sono due possibili casi, secondo se prendiamo  y3 come determinante o di Q3, il minore, o Q3‘, il valore superiore. Se prendiamo Q3, P0 porta direttamente a P3, e qui ci sarà sempre risparmio; questo accade quando T è piccolo. Ma se T è grande, Q0 porta direttamente a Q3‘, e P0 va in primo luogo a P4, e poi indietro a P3, all’inizio qui c’è il risparmio, e successivamente sperpero.

Allo stesso modo , se c0 > c3 , ci sono due possibili casi, e in questo caso è la tangente inferiore da P3 che non può essere presa .

Al fine di determinare quali tangenti prendere e anche il valore di K dobbiamo utilizzare la condizione derivata dall’equazione (7)

Traduzione Schermata 2014-01-06 alle 20.33.06

Questo , unitamente al fatto che le ascisse di P0 e P3 sono c0, c3, e che hanno la stessa ordinata K , è sufficiente a fissare sia K e le tangenti da adottare.

(c) Dobbiamo ora vedere come i nostri risultati devono essere modificati quando non riteniamo le future utilità e disutilità uguali a quelle attuali, ma le attualizziamo ad un tasso costante ρ.

Questo tasso di attualizzazione di vantaggi futuri deve, naturalmente, essere distinto dal tasso di attualizzazione di future somme di denaro.

Se posso prendere in prestito o dare  in prestito ad un tasso r devo necessariamente essere altrettanto soddisfatto con un extra di £ 1 ora e un extra  £ (1 + r) dopo un anno, dal momento che potrei scambiare l’ uno con l’altro. Il mio tasso marginale di sconto per il denaro è, dunque, necessariamente r, ma il mio tasso di sconto per l’utilità può essere molto diverso, dal momento che l’utilità marginale del denaro per me può variare per il mio aumentare o diminuire della spesa col passare del tempo .

Assumendo il tasso di sconto costante, non voglio dire che è lo stesso per tutti gli individui dal momento che attualmente ci occupiamo di un solo individuo o di una comunità, ma che il valore attuale di un godimento ad una qualche data futura deve essere ottenuto attualizzandolo al tasso ρ. Così, assumendo che sia circa 3/4 per cento, l’utilità in certo momento sarebbe considerata come due volte più desiderabile di quella di cento anni più tardi, quattro volte più preziosa che 200 anni più tardi, e così via ad un tasso di attualizzazione composto.

Questa è l’unica ipotesi che possiamo fare, senza contraddire la nostra ipotesi fondamentale che le generazioni successive sono mosse dallo stesso sistema di preferenze. Infatti, se avessimo avuto un tasso variabile di attualizzazione – vale a dire dire uno più alto per i primi 50 anni – la nostra preferenza per godimenti nel 2000 d.C. rispetto a quelli del 2050 d.C. verrebbero calcolati al tasso più basso, ma quello delle persone vive nel 2000 d.C. sarebbe al valore più alto.

Supponiamo in primo luogo che il tasso di sconto per l’utilità ρ sia inferiore al tasso di interesse r.

Allora le equazioni (1) e (2) sono invariate, ma l’equazione (3) diventa

Schermata 2014-01-06 alle 20.36.05

se stiamo assumendo   Schermata 2014-01-06 alle 20.36.18       costante e uguale a r;

Traduzione Schermata 2014-01-06 alle 20.36.55

Questa equazione è la stessa della (8) tranne che invece di w(y) e W(y), che è ∫ w(y) dy, abbiamo wr / (r – ρ )(y) e  ∫ w r / (r – ρ )(y) dy.

Il metodo di soluzione sia per una comunità sia per un individuo è dunque lo stesso di prima, tranne che al posto dell’effettiva utilità della rendita da capitale dobbiamo considerare che possiamo affermare la sua utilità modificata, ottenuta integrando l’utilità marginale alla potenza r/(r-ρ). Questo ha l’ effetto di accelerare la diminuzione dell’utilità marginale e di diminuire l’importanza relativa di alti redditi. In questo modo possiamo tradurre la nostra attualizzazione del futuro in una attualizzazione di alti redditi. La velocità con cui questo viene fatto è disciplinata esclusivamente dal rapporto ρ su r, in modo che se ρ è 0, esso è indipendente dal valore di r, purché questo non sia 0. La conclusione principale della sezione I viene così confermata.

Vi è, tuttavia , una piccola difficoltà, perché non abbiamo ancora veramente dimostrato che se consideriamo un tempo infinito, la costante K deve essere interpretata come quella che si potrebbe chiamare “felicità modificata”, vale a dire il valore massimo di Schermata 2014-01-06 alle 20.42.01

Questa felicità modificata richiederebbe lo stesso reddito come per la felicità, essendo la modifica esclusivamente nel valore impostato su di essa. Questo risultato può tuttavia essere dedotto immediatamente dall’equazione ( 9a ), che dimostra che y aumenta fino a che si

raggiunge la felicità, così che  Schermata 2014-01-06 alle 18.58.07        non possa mai diventare negativa e K non può essere inferiore alla felicità modificata. D’altra parte, purché questa condizione sia soddisfatta, la 9 (a) mostra che più grande è la y inizialmente, più piccola sarà la A,  più grande sarà y nel tempo futuro. Quindi K deve essere la più piccola possibile (purché non sia così piccola da rendere Schermata 2014-01-06 alle 18.58.07             in fine negativa) ; in modo che K non può essere maggiore della felicità modificata. Quindi se non è né inferiore né maggiore  deve essere uguale.

Come in (b), si può adattare la nostra soluzione al caso di un individuo con solo un tempo finito di vita, così in questo caso disegnerò le tangenti alla curva di utilità modificata.

Un caso particolare interessante è quella di una comunità per la quale

Traduzione Schermata 2014-01-06 alle 20.42.50

E’ chiaro che corrisponde a K = B nel caso in cui ρ = 0

abbiamo qui K = K1

e il risparmio  Schermata 2014-01-06 alle 20.44.46ovvero, una percentuale costante Schermata 2014-01-06 alle 20.44.57     della rendita da capitale deve essere risparmiata, che se ρ = 0 sarà   Schermata 2014-01-06 alle 20.45.13                   e indipendente da r.

Se il tasso di interesse è inferiore al tasso di attualizzazione dell’utilità, avremo equazioni simili, che portano ad un risultato molto diverso. L’utilità marginale del consumo aumenterà ad un tasso ρ –  r, e il consumo scenderà verso il livello più basso di sussistenza per il quale la sua utilità marginale può essere presa come infinita, se trascuriamo la possibilità del suicidio. Durante questo processo tutto il capitale verrà consumato e i debiti contratti si estenderanno a quelli da cui sono stati ottenuti, l’ipotesi più semplice a questo punto è che sarà possibile prendere in prestito una somma tale che è solo possibile per restare in vita dopo aver pagato gli interessi su di essa.

III

Consideriamo ora il problema della determinazione del tasso di interesse .

(α) In primo luogo, supponiamo che tutti attualizzano l’utilità futura per sé o per i propri eredi, allo stesso tasso ρ.

Allora in uno stato di equilibrio non ci sarà alcun risparmio e

Traduzione Schermata 2014-01-06 alle 20.45.38

tre equazioni per determinare x , a e c .

L’ ultima equazione ci dice che il tasso di interesse come determinato dalla produttività marginale del capitale   Schermata 2014-01-06 alle 20.36.18            , deve essere uguale al tasso di attualizzazione ρ.1

Ma supponiamo che in un dato momento, diciamo quello presente,  Schermata 2014-01-06 alle 20.36.18         > ρ.

Allora non ci sarà equilibrio, ma il risparmio, e poiché una grande quantità non può essere risparmiata in un breve periodo di tempo, potrebbe volerci secoli prima che l’equilibrio sia raggiunto, o può non essere mai raggiunto, ma solo approssimato asintoticamente; e si pone la questione di come, nel frattempo, il tasso di interesse viene determinato, poiché non può esserlo dall’equazione ordinaria di equilibrio della domanda e dell’offerta .

La difficoltà è che il tasso di interesse non funziona come richiesta di prezzo per un intera quantità di capitale, ma come un prezzo di fornitura, non per una quantità di capitale, ma per un tasso di risparmio. Lo stato risultante della situazione è rappresentata in fig. 3, in cui, tuttavia, variazioni della quantità di lavoro sono trascurate. Questo mostra la curva di domanda per il capitale r =Schermata 2014-01-06 alle 20.36.18    , la curva definitiva di offerta r = ρ e la curva temporanea di offerta c = c0 .

È chiaro che il tasso di interesse è determinato direttamente dalla intersezione della curva di domanda con le temporanea curva di offerta c = c0. La curva definitiva di offerta r = ρ entra in gioco solo in quanto disciplina il tasso al quale c0 approssima il suo valore definitivo OM , un tasso che dipende approssimativamente dal rapporto di PM su QN. Vediamo, dunque , che il tasso di interesse è disciplinato principalmente dal prezzo di domanda, e può superare di gran lunga la ricompensa definitiva necessaria per indurre l’astinenza.

1 L’ equilibrio potrebbe, tuttavia, essere ottenuto o alla felicità  con ρ < Schermata 2014-01-06 alle 20.36.18      , o al livello di sussistenza con  ρ >  Schermata 2014-01-06 alle 20.36.18  . Cfr. ( γ ) di seguito .

Allo stesso modo, nella contabilità di uno Stato Socialista la funzione del tasso di interesse garantirebbe l’uso più saggio del capitale esistente, non servirebbe in alcun modo diretto come guida per la quota di reddito che deve essere risparmiata.

(β) Ora dobbiamo cercare di tenere un po’ in conto il fatto che persone diverse attualizzano l’utilità futura a tassi differenti, e, a parte il fattore tempo, non sono abbastanza interessati ai loro eredi come in loro stessi.

Supponiamo che non siano interessati affatto ai loro eredi;

Schermata 2014-01-06 alle 20.48.25

che ad ogni uomo è imposta una quota del mantenimento di quei bambini che sono necessari per mantenere in esistenza la popolazione, ma inizia la sua vita lavorativa, senza alcun capitale e si conclude senza alcuno, dopo aver speso i suoi risparmi in una annualità; che all’interno della sua propria vita ha un programma di utilità costante per il consumo e l’attualizzazione di utile futuro ad un tasso costante, ma che questo tasso si può supporre diverso per persone diverse.

Quando tale comunità è in equilibrio , il tasso di interesse deve, ovviamente0, essere uguale al prezzo di offerta di capitale  Schermata 2014-01-06 alle 20.36.18       . E sarà anche uguale al ” prezzo di fornitura “che nasce nel seguente modo.

Supponiamo che il tasso di interesse sia costante e pari a r, e che il tasso di attualizzazione di un determinato individuo sia ρ. Allora, se r > ρ, egli risparmierà quando è giovane, non solo per provvedere per la perdita della capacità di guadagno in età avanzata, ma anche perché può ottenere più sterline da spendere in un secondo momento rispetto a quelle che rinuncia a spendere ora. Se trascuriamo le variazioni nella sua capacità di guadagno, la sua azione può essere calcolata modificando le equazioni IIc applicandole ad una vita definita come in IIb. Egli accumulerà per un periodo il capitale, e quindi lo spenderà prima di morire. A parte quest’uomo, dobbiamo supporre che ci siano nelle nostre comunità altri uomini, esattamente come lui, tranne che per essere nati in tempi diversi. Il capitale totale posseduto da n uomini di questo tipo le cui date di nascita sono distribuite uniformemente per tutto il periodo di una vita sarà n volte il capitale medio posseduto da ciascuno nel corso della sua vita. La classe degli uomini di questo tipo possederà, dunque, un capitale costante a seconda del tasso di interesse, e questo sarà l’importo del capitale da essi fornito a quel prezzo. (Se ρ > r, potrebbe essere negativo, in quanto potrebberoro prendere in prestito da giovani e rimborsare da vecchi.) Possiamo quindi ottenere la curva di offerta totale del capitale sommando le forniture ad un determinato prezzo per ciascuna classe dei singoli individui.

Se, poi, si trascura l’interesse degli uomini nei loro eredi, vediamo che il capitale ha un prezzo di cessione determinato per essere equiparato al suo prezzo di domanda. Questo prezzo di offerta dipende da tassi di attualizzazione delle persone per l’utilità, e può essere equiparato al tasso di attualizzazione del “risparmiatore marginale”, con il significato di qualcuno il cui tasso di attualizzazione è pari al tasso di interesse che né risparmia né prende a prestito (salvo per provvedere  alla vecchiaia ) .

Ma la situazione è diversa dal problema di fornitura ordinaria, in questo che quelli oltre questo “margine ” non forniscono semplicemente nulla, ma determinano una prestazione negativa prendendo in prestito quando sono giovani contro i loro guadagni futuri, ed essendo mediamente in debito.

(γ) Ora torniamo al caso (α) immaginando uomini, o piuttosto famiglie, che vivono per sempre, e il tasso di attualizzazione dell’utilità futura costante, ma cerchiamo questa volta di tener conto delle variazioni del tasso di attualizzazione da famiglia a famiglia.

Per semplicità supponiamo che la quantità di lavoro è costante, in modo che il reddito totale del paese può essere considerato come una funzione f(c), del solo capitale. Il tasso di interesse sarà allora f”(c). Supponiamo anche che ogni individuo possa raggiungere la massima utilità concepibile con un reddito x1 finito, e che nessuno potrebbe sostenersi in vita con meno di x2.

Ora supponiamo che l’equilibriosi ottenga con un capitale c, reddito f(c), e un tasso di interesse f'(c) o r. Allora queste famiglie, diciamo in numero di m(r), il cui tasso di attualizzazione è inferiore a r devono aver raggiunto la felicità o starebbero ancora aumentando la loro spesa secondo l’equazione (9a). Di conseguenza, esse avranno tra loro un reddito m (r).x1. Le altre famiglie, in numero n – m (r) (dove n è il numero totale delle famiglie), devono essere al livello di sussistenza, o starebbero ancora diminuendo le loro spese. Di conseguenza queste avrebbero tra loro  un reddito complessivo { n – m(r)} x2,

Traduzione Schermata 2014-01-06 alle 20.49.46

che, insieme con r = f ‘( c ), determina r e c.  Essendo m (r) una funzione crescente di r, è facile vedere, disegnando i grafici di r in funzione di f ( c ), che le due equazioni hanno in generale una unica soluzione unica 2.

In tal caso, quindi, l’equilibrio sarebbe raggiunto da una divisione della società in due classi, la classe parsimoniosa che gode della felicità e una improvvida al livello di sussistenza.

F.P. Ramsey

King’s College , Cambridge.

1 Si è supposta ogni famiglia in equilibrio, che è l’unico modo in cui questo stato può essere mantenuto,dal momento che altrimenti, sebbene i risparmi di alcuni bilancerebbero in ogni istante i prestiti degli altri, non continuerebbero a farlo se non per un fatto straordinario.

2 Abbiamo trascurato in questo il numero trascurabile di famiglie per cui ρ è esattamente uguale a r.

Annunci

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger hanno fatto clic su Mi Piace per questo: