Frank Ramsey: FURTHER CONSIDERATIONS – Capitolo VIII di The Foundation of Mathematics e Parte C. di Last Papers

22 Giu

Ramsey_2Propongo la mia traduzione delle parti del testo di Frank Plumpton Ramsey aggiuntive all’esame dei sistemi di valutazione delle probabilità. Si tratta del capitolo VIII di The Foundation of Mathematics e la sezione C. del capitolo IX ‘Last Papers’.

Si tratta di una serie di elementi aggiuntivi e correttivi della teoria esposta nel capitlo VII.

VIII

ULTERIORI CONSIDERAZIONI (1928)

A. RAGIONEVOLE GRADO DI CONVINZIONE

Quando passiamo oltre ragionevole = mio, o = scientifico, il definirlo in modo esatto è proprio impossibile. Seguendo Peirce, lo affermiamo per un’abitudine non per un giudizio individuale. Approssimativamente, un ragionevole grado di convinzione = proporzione di casi in cui questa abitudine porta alla verità. Ma nel cercare di essere più precisi si incontrano le seguenti difficoltà:

(1) Non si può sempre prendere l’abitudine presente: potrebbe in modo corretto essere derivata da una qualche precedente esperienza accidentalmente fuorviante. Allora guardiamo ad una più larga abitudine a formare una tale abitudine.

(2) Non possiamo fornire una percentuale di casi reali; ad esempio in un gioco di carte a cui si gioca molto raramente, così che delle particolari combinazione in questione ci sono pochissimi casi effettivi.

(3) A volte effettivamente accettiamo una teoria del mondo con alcune leggi e alcune possibilità, e intendiamo non la percentuale dei casi effettivi ma quale è la probabilità della nostra teoria.

(4) Ma si potrebbe sostenere che questa complicazione non sarebbe necessaria a causa della (1) per la quale noi prendiamo in considerazione solo le abitudini molto generali, delle quali ci così sono tanti esempi che, se la probabilità secondo la nostra teoria differisse dalla percentuale effettiva, la nostra teoria dovrebbe essere sbagliata.

(5) Anche in un caso basilare come l’induzione, potrebbe non esserci alcuna possibilità per esso: questo non è il caso di cose riguardanti una probabilità.

Fortunatamente non vi è alcun motivo per fissare in un preciso il senso di ‘ragionevole’; questo potrebbe essere imposto solo per uno o due motivi: o perché il ragionevole sarebbe il soggetto argomento di una scienza (che non è il caso); o perché ci aiuterebbe ad essere razionali per conoscere cosa è una ragionevolezza (che non ci aiuta, sebbene alcune false opinioni potrebbero impedircelo). Per rendere chiaro che non è necessario per ambedue questi scopi si deve considerare (1) il contenuto della logica

e (2) l’utilità della logica.

IL CONTENUTO DELLA LOGICA

(1) Preliminare all’indagine filosofico-psicologica sulla natura del pensiero, sulla verità e ragionevolezza.

(2) Formule per la deduzione formale = matematica.

(3) Indicazioni per evitare confusione (appartiene alla psicologia medica).

(4) Schema della maggior parte delle proposizioni generali conosciute o utilizzate come abitudini di inferenza da un punto di vista astratto; o rozzamente induttivo, come ‘il metodo matematico ha risolto tutti questi altri problemi, quindi … ‘, oppure sistematica, quando viene chiamato metafisica. Tutto questo potrebbe ad ogni modo essere chiamato metafisica; ma è considerato come la logica, quando addotto come avente relazione con un problema irrisolto, non semplicemente come informazione interessante per personale interesse.

L’unica di queste che è una scienza distinta è evidentemente la (2).

L’UTILITÀ DELLA LOGICA

Quella delle sopra indicate (1) (3) sono evidenti: quelli interessanti sono le (2) e (4). (2) = la matematica è indispensabile per manipolare e sistematizzare le nostre conoscenze. Oltre a questo (2) e (4) ci aiutano a in qualche modo a pervenire a delle conclusioni nel giudizio.

 LOGICA COME AUTOCONTROLLO (cfr. Peirce)

L’autocontrollo, in generale, significa o

(1) non agire in base al desiderio temporaneamente dominante, ma fermarsi a riflettere bene su questo; cioè porre attenzione a tutti i desideri e verificare quale è effettivamente il più forte; nella valutazione di questo consiste l’eliminazione delle incoerenze nell’agire;

o (2) disporre come risultato di una abitudine decisionale abitudini ad agire in risposta non a desideri o stimoli occasionali, ma in un modo deciso adeguato ad un desiderio stabile.

La differenza è che in (1) ci fermiamo a pensarci bene ma in (2) ci abbiamo pensato bene prima e ci fermiamo solo a fare ciò che avevano precedentemente deciso di fare.

Così anche la logica ci permette di

  1. Non formulare un giudizio sulla base delle prove immediatamente davanti a noi, ma a fermarci a pensare a tutto il resto che noi riteniamo in qualche modo pertinente. Ci permette di non essere incoerenti, e anche di porre attenzione alle questioni veramente generali, ad esempio, tutti i corvi che ho visto sono di colore nero, così questo sarà – non un corvo; il colore è in determinate altre specie di uccelli una qualità variabile.. Così, ad esempio non solo argomentare da φa, φb …a (x).φ(x) come probabile, ma il considerare che il sostenere che a, b. . . siano la classe che ho visto (e quelle visibili sono in modo particolare probabilmente o improbabilmente φ). Questa differenza tra selezione influenzata e casuale. 1

1 Vedi infra ‘Chance’.

(2) Il formare certe abitudini fisse di procedura o di interpretazione solo riviste ad intervalli quando pensiamo bene sugli oggetti. In questo è lo stesso di qualsiasi giudizio generale; dobbiamo solo considerare il processo come ‘logico’ quando è molto generale, non ad esempio aspettarsi che una donna sia infedele, ma ad esempio di respingere coefficienti di correlazione con un errore probabile più grande di loro.

Per quanto riguarda la formazione di un giudizio o una giudizio parziale (che è una decisione che corrisponde ad un grado di convinzione di un certo grado, cioè ad agire in un certo modo), si deve notare che: –

(a) Quello che domandiamo è ‘p?’ non ‘Sarebbe giusto pensare p? ‘Né ‘ Sarebbe ragionevole pensare p? ‘ (Ma questi potrebbero essere utili primi passi.)

ma (b) ‘Sarebbe vero pensare p?’ non può mai essere determinata senza determinare a cosa corrisponda p.

(c) ‘Sarebbe ragionevole pensare p?’ significa semplicemente ‘ è p quanto accade di solito in un caso del genere?’ ed è vago come ‘solito’. Porre questa domanda ci potrebbe aiutare, ma spesso non sembra più facile rispondere che p stessa.

(d) non può neppure essere fissato il preciso significato in cui ‘ragionevole’ o ‘solito’ può essere utilmente adottato, né assegnato un peso per qualche principio a diverse considerazioni di tal sorta. Ad esempio il tasso di mortalità per gli uomini di 60 anni è di 1/10, ma tutti i 20 sessantenni dai capelli rossi che ho conosciuto hanno vissuto fino a 70 anni. Cosa mi dovrei attendere dei nuovi sessantenni dai capelli rossi? Non posso che mettere le prove davanti a me, e lasciare che agiscano nella mia mente. Vi è un conflitto di due ‘di solito’, che deve venir elaborato nella mia mente; uno non è realmente ragionevole, l’altro è effettivamente ragionevole.

(e) Tuttavia, quando la prova è molto complicata, le statistiche vengono introdotte per semplificarla. Queste devono essere scelte in modo tale da influenzare me quanto più possibile nello stesso modo come farebbe l’insieme dei fatti che essi rappresentano se riuscissi a comprenderli con chiarezza. Ma questo non può essere del tutto ridotto a una formula; il resto della mia conoscenza può influenzare la questione; quindi p può essere equivalente in influenza a q, ma non ph a qh.

(f) Ci sono casi eccezionali in cui ‘Sarebbe ragionevole pensare p’ risolve completamente l’argomento. Così, se ci viene detto che uno dei nomi di queste persone inizia con A e che ci sono 8 di queste persone, è ragionevole credere con grado un ottavo che il nome di qualche particolare nome inizia con A, e questo è ciò che dovremmo fare tutti (a meno che non sentissimo che ci sia qualche qualcosa di pertinente).

(g) Tuttavia, introdurre l’idea di ‘ragionevole’ è in realtà un errore; ma sarebbe meglio dire ‘solitamente’, che rende evidente l’indeterminatezza dell’insieme: ciò che è ragionevole dipende da ciò che viene assunto come importante; se assumiamo come abbastanza importante, se è ragionevole pensare p diventa almeno un problema difficile come p. Se prendiamo tutto come importante è la stessa cosa.

(h) Cosa dovremmo prendere come importante? Quel genere di cose che è utile prendere come importanti; se mettessimo in relazione con l’essere importante con riferimento a quello che assumiamo come importante, questo potrebbe significare ogni cosa. Altrimenti è impossibile affermarlo; ma il problema è quello posto dall’osservatore non dalla persona stessa che pensa: se il pensatore sente un oggetto importante non può eliminarlo; e se lo sente irrilevante non potrà usarlo.

(i) Solo quindi, se sentiamo in realtà essere molto poco importante, o rispondiamo o possiamo rispondere alla domanda con un riferimento a ciò che è ragionevole, essendo questo quindi equivalente a ciò che noi riconosciamo e consideriamo importante.

(j) Quello che viene o non viene preso come importante sono non solo le proposizioni ma anche gli oggetti formali, ad esempio a=a: noi possiamo reagire diversamente a φa che a qualsiasi φx non per qualcosa che sappiamo circa a ma ad esempio per ragioni emotive.

 B. STATISTICHE

La scienza statistica si occupa di sintesi di fatti circa numerosi individui che vengono interpretati come una selezione casuale da una ‘popolazione’ infinita. Se le qualità in questione sono discrete, questo significa semplicemente che si considerano le percentuali degli individui osservati che hanno certe qualità, e attribuire queste percentuali alla ipotetica popolazione. Se le qualità sono continue, assumiamo che la popolazione sia di una opportuna forma semplice contenente vari parametri che vengono poi scelti per dare la massima probabilità agli esempi oggetto di osservazione. In entrambi i casi l’errore probabile viene calcolato per un certo campione estratto da una certa popolazione. (Per tutto questo si veda Fisher).1

Il significato di questa procedura è che registriamo in una semplice conveniente forma

(1) Le percentuali approssimative aventi le caratteristiche date in gradi diversi,

(2) Il numero di esempi che abbiamo osservato (il peso della nostra induzione) (errore probabile).

Per l’utilizzo dei numeri per dare un grado di convinzione per quanto riguarda un nuovo esempio non può essere data nessuna regola.

L’introduzione di una popolazione infinita è una invenzione stupida, che non può essere difesa se non attraverso qualche riferimento a procedure ad un limite, che ne distrugge il significato. La procedura di calcolare i parametri per massima verosimiglianza e probabile errore può essere definito come un processo di matematica pura; il suo significato è nel suggerire una teoria o un insieme  di probabilità. La percentuale di una popolazione infinita dovrebbe essere sostituita dalla probabilità.

Ovviamente lo scopo non è sempre la semplice induzione ma l’analisi causale: troviamo che le probabilità non sono quello che ci aspettiamo, quindi o il dado è truccato o adesso le persone sono più accurate, ecc.

1 “Teoria della stima statistica,” [p.204] RA Fisher, Proc. Camb. Phil. Soc., 22, pp.700-725 (1925), and Statistical Methods for Research Workers.

C. PROBABILITA’

(1) Non esistono cose come probabilità oggettive, nel senso in cui alcune persone immaginano che ci siano, ad esempio, N. Campbell, Nisbet.1

Non esiste, per esempio, nessun dato di fatto nella forma ‘In n consecutivi lanci il numero di teste si trova compreso tra n/2±ε(n)’. Al contrario, abbiamo buoni motivi di ritenere che una legge del genere sarebbe rotta, se prendiamo abbastanza casi di questi lanci.

Né esiste un qualche dato di fatto determinato empiricamente su una serie infinita di lanci; questa formulazione viene adottata solo per evitare una contraddizione con l’esperienza; e ciò che nessuna esperienza può contraddire, nessuna esperienza può confermare, permette solo di non parlare di enunciarlo.

(N. Campbell fa un semplice errore in questo.)

Una teoria grezza della frequenza è inammissibile poiché essa giustifica la ragione della ‘maturità delle probabilità’, ad esempio con riguardo al sesso della prole.

(2) Quindi le probabilità devono essere definite attraverso i gradi di convinzione; ma essi non corrispondono a nessuno effettivo grado di convinzione; le probabilità di 1.000 volte tasta e di 999 seguita da croce, sono uguali, ma tutti si aspetterebbero più le prime rispetto alle seconde.

(3) Le probabilità sono gradi di convinzione all’interno di un determinato sistema di convinzioni e di gradi di convinzione; non quelli di qualsiasi persona reale, ma in un sistema semplificato a cui quelli di persone reali, specialmente di chi parla, in parte si approssimano.

(4) Questo sistema di convinzioni è costituito, in primo luogo, delle leggi naturali, che sono in questo date per certe, sebbene, naturalmente, le persone non siano in realtà abbastanza sicure di queste.

(5) Oltre a ciò il sistema contiene vari oggetti di questo genere: quando conoscendo ψx e null’altro di importante, si aspetta sempre φx con grado di convinzione p (ciò che è o non è importante è anche specificato nel sistema); che si può anche scrivere che la probabilità di φ dato ψ è p(se p = 1 è lo stessa cosa di una legge). Queste probabilità insieme con le leggi formano un sistema deduttivo secondo le regole di probabilità, e le convinzioni effettive di un utilizzatore del sistema dovrebbe approssimarsi a quelle dedotte da una combinazione del sistema e dalla particolare conoscenza di fatto posseduta dall’utente, questo ultimo essendo (inesattamente) assunto come determinato.

1 R.H. Nisbet, “The Foundation of Probability”, Mind, 1926.

(6) Le probabilità di un tale sistema non devono essere confuse con le frequenze; la probabilità di φx dato ψx potrebbero essere anche diverse dalla frequenza conosciuta di ψ che è φ. Ad esempio la probabilità di una moneta  di dare testa ieri è 1/2 dal momento che ‘ieri’ è irrilevante, ma la percentuale che effettivamente ha dato testa ieri potrebbe essere 1.

(7) E’ evidente, tuttavia, che non siamo provveduti di sistemi che forniscano un grado di convinzione in ogni possibile proposizione per qualsiasi base di conoscenza dei fatti. I nostri sistemi coprono solo parte del campo; e dove non abbiamo un sistema diciamo che non conosciamo le probabilità.

(8) I fenomeni che hanno probabilità sistematiche sono giochi d’azzardo, nascite, morti, e tutti i tipi di coefficienti di correlazione

(9) Cosa si intende per probabilità oggettiva non è solo il nostro avere nel nostro sistema una probabilità φ(x)/ψ(x), ma nel nostro non avere speranza di modificare il nostro sistema in un paio di leggi αx.ψx.⊃x .φx:βx.ψx.⊃x . ∼φx, ecc., dove αx, βx sono disgiunzioni di proprietà facilmente osservabili (precedenti nel tempo a φx). Questo si verifica, come puntualizza Poincaré 1, quando piccole cause producono grandi effetti.

Le probabilità sono in un altro senso oggettive, nel senso in cui tutti sono d’accordo su di esse, a differenza ad esempio per le scommesse sui cavalli.

(10) Cosa si intende per un evento di non essere una coincidenza, o non essere dovuto al caso, è che se andiamo a conoscerlo, ci costringerebbe a non considerare più a lungo il nostro sistema come soddisfacente, anche se nel nostro sistema l’evento può essere più improbabile rispetto a qualsiasi alternativa. Così 1.000 volte testa nel lancio di una moneta non sarebbe dovuto al caso; cioè se lo osservassimo dovremmo cambiare il nostro sistema di probabilità per il lancio di quel penny. Se questo viene chiamato h, le probabilità nel nostro sistema con h come ipotesi sono molto diverse dai nostri gradi effettivi di convinzione in determinati h.

Dicendo che un oggetto non è dovuto al caso, noi solamente intendiamo che il nostro sistema di probabilità deve essere modificato, non che questo deve diventare un sistema di leggi. Così per una moneta truccata che da’ testa non è dovuto alla probabilità anche se non sempre funziona così; per esempio: la probabilità può essere posta ad esempio = 2/3, non 1/2 .

Se diciamo ‘Il nostro incontro non era dovuto al caso’, cioè programmato, la programmazione è solo un fattore che modifica le probabilità; ma potrebbe anche essere ad esempio che stavamo camminando nella stessa strada.

(11) Questo è il motivo per cui N. Campbell pensa che coincidenze non si possano ammettere che avvengano; vale a dire le coincidenze . ⊃ . un sistema errato, ∴ un sistema . ⊃ . nessuna coincidenza. A quanto pare formalmente coerente; ma questo è un errore perché il sistema non è una proposizione che è vera o falsa, ma un’imprecisa approssimazione di uno stato d’animo in cui alcune imperfezioni possono in determinate circostanze risultare particolarmente evidenti.

1Vedi Science et Hypothèse e Science et Méthode.

(12) Con gli oggetti che sono in ultima analisi, dovuti al caso, intendiamo dire che non esiste una legge (qui una generalizzazione di una complessità maggiore di quella gestibile), conosciuta o sconosciuta, che determina il futuro a partire dal passato. Se supponiamo inoltre che hanno probabilità assolute, questo rappresenta una sorta di sistema migliore in cui avere queste probabilità.

(13) Nella scelta di un sistema dobbiamo risolvere con un compromesso tra due principi: fatta salva la condizione che il sistema non deve contraddire i fatti che conosciamo, scegliamo (essendo un altro oggetto equivalente) il sistema più semplice, e (a parità di condizioni) scegliamo il sistema che dia la più alta probabilità ai fatti che abbiamo osservato. Questo ultimo è di ‘principio di massima verosimiglianza ‘ di Fisher, e fornisce l’unico metodo di verifica di un sistema di probabilità.

(14) La probabilità in fisica significa possibilità come spiegato qui, con alcune possibili complessità aggiunte perché siamo interessati ad una ‘teoria’ nel senso di Campbell, non solo ad un sistema normale che è una generalizzazione della legge di Campbell.’ Cosa sia il caso in una teoria è difficile da spiegare fino a che non sapremo di più sulla natura delle teorie.1

1 [Vedi la sezione seguente – Ed. ]

(15) La scienza statistica deve essere brevemente trattata dal nostro punto di vista; essa ha tre parti

(a) Raccolta e ordinamento di una selezione di dati da un una moltitudine di dati

(b) induzione = formare un sistema di probabilità dei dati mediante il Principio di Massima Verosimiglianza.

(c) analisi causale: ad esempio, questo dado cade così spesso in questo modo in su, quindi il suo centro di gravità deve essere spostato verso la faccia opposta.

(16) L’unica difficoltà è presente in relazione a (c) analisi causale, in cui ci sembra di fare una asserzione di probabilità come un fatto, e di sostenere ‘il dare così spesso sei non è dovuto al caso’‚ ∴ probabilità > 1/6 ∴ centro di gravità spostato. Ragionamento che sembra incompatibile con la nostra soluzione del paradosso che ‘la probabilità = 1/6’, è incoerente con questa coincidenza che era che ‘la probabilità =1/6’, la probabilità >1/6’ non sarebbero proposizioni e pertanto non potrebbero servire come premesse e conclusioni di ragionamenti.

(17) La difficoltà viene rimossa dall’osservazione che il sistema che in definitiva stiamo utilizzando non solo ci fornisce il grado di convinzione o di probabilità di x di dare sei assumendo che x sia lanciato = 1/6, ma anche una probabilità di x di dare sei dato che x viene lanciato ed è truccato >1/6. Di conseguenza, dal recepimento che x è truccato/ x esce sei volte che x è lanciato > che x è truccato/ x è lanciato. Se a/bh> a/h, allora b/ah>b/h e questo è come dovremmo pensare. La probabilità di a che x lanciato dia sei è p sembra si debba trattare come una vera proposizione, ma quello che realmente intendiamo è una condizione non esplicita, che nel nostro sistema nel momento che viene aggiunto alle ipotesi determina la probabilità p.

(18) Possiamo affermare questo così: l’analisi casuale statistica presuppone un sistema basilare all’interno del quale si muove e che lo lascia immutato; questa non è né sembra possa essere trattata come una proposizione. Ciò che sembra si possa trattare così è un più ristretto sistema derivato o derivabile dal sistema principale con l’aggiunta di una premessa empirica, e ciò che è effettivamente trattato come una proposizione e modificato o respinto non è il sistema più ristretto, ma la premessa empirica su cui essa si basa.

Naturalmente questa premessa empirica può essere sconosciuta o molto vagamente conosciuta; ad esempio, concludo dal fatto che sono nati più ragazzi che ragazze da una certa superiorità numerica, una superiore mobilità, o capacità di fecondazione di spermatozoi con caratteri maschili o per una delle mille altre possibili cause, perché per il Principio di Indifferenza, che fa parte del mio sistema fondamentale, la differenza osservata sarebbe così inverosimile se non ci fosse una tale differenza. Ma qui non sembra esserci una differenza fondamentale tra questo caso e la moneta truccata.

(19) Note sul problema di Poincaré ‘Perché gli eventi casuali sono soggetti ad una legge?’ La risposta principale a questo è che non lo sono, assumendo che nell’intero campo degli eventi casuali non sono possibili generalizzazioni su di essi (si pensi ad esempio alle malattie infettive, i dattili negli esametri, i morti per calci di cavalli, le nascite di grandi uomini).

Poincaré dice che è paradossale che l’attuario possa derivare dall’ignoranza così semplici ed utili conclusioni mentre se conoscesse le leggi della salute dovrebbe passare attraverso calcoli senza fine. In realtà egli opera non per ignoranza, ma per esperienza di frequenze.

(20) Nota su ‘casuale’.

Keynes 1 fornisce un resoconto sostanzialmente corretta di questo. Ma

(a) E’ essenziale introdurre il concetto di una descrizione.  Quello che vogliamo non è che a sia un membro  casuale di Schermata 2013-08-22 alle 18.42.59      (Sx) con lo scopo φx, ma la descrizione (ιx)(ψx) è una descrizione casuale quando x= (ιx)(ψx) è trascurabile rispetto a φx/Sx.h.

(b) E’ indispensabile estendere il termine per coprire non solo una selezione di un  termine, ma di molti; quindi, che ψ  Schermata 2013-08-22 alle 18.42.59      fornisce una selezione casuale di n di S in riferimento a φ Schermata 2013-08-22 alle 18.42.59   significa che a= Schermata 2013-08-22 alle 18.42.59    (ψx) è irrilevante alla probabilità nella forma: Rapporto di α che è φ= λ/α∊n.α⊃ Schermata 2013-08-22 alle 18.42.59   (S(x).h.

L’idea di selezione casuale è utile nell’induzione, in cui il valore del ragionamento ‘Un rapporto λ su ψS è uguale a φ’ ∴ che ‘ Un rapporto λ su S è uguale a φ’ dipende se ψ è un selettore casuale. Se λ=1 naturalmente il valore del ragionamento è rafforzato se ψ è affetto da errore sistematico contro φ, indebolito se φ è affetto da errore sistematico in favore di questo.

Treatise on Probability, P.291.

DAL CAP. IX Ultime carte (1929):

C. PROBABILITA’ E CONVINZIONE PARZIALE

Il difetto del mio saggio sulla probabilità era che ho assunto la convinzione parziale come un fenomeno psicologico definibile e misurabile  da uno psicologo. Ma questo tipo di psicologia è molto poco accettabile e sarebbe abbastanza inaccettabile in una scienza sviluppata. In effetti la nozione di un grado di convinzione 2/3 è inutile per un osservatore esterno, tranne quando viene usato dallo stesso che pensa e che dice: ‘Be’, io credo in una certa misura 2/3′, vale a dire (almeno questo è l’interpretazione più naturale)’ Ho lo stesso grado di convinzione in questo come in p v q quando io considero p,q,r ugualmente verosimili e so che uno di essi è vero.’ Ora, qual è il concetto di questo confronto numerico? come viene utilizzato il numero? In un grande numero di casi viene utilizzato semplicemente come base per ottenere altri numeri dello stesso tipo derivandone alla fine in un caso circa prossimo a zero o ad 1 che viene assunto essere 0 o 1 e la parziale convinzione essere una completa convinzione. Ma a volte il numero viene assunto per sé stesso nel prendere una decisione concreta. Come? Vorrei dire conformemente alla legge della speranza matematica, ma non posso farlo, perché potremmo usare solo questa regola se avessimo misurato buoni e cattivi risultati. Ma forse in un certo modo ci avviciniamo ad essa, come avremmo supposto in economia di massimizzare un’utilità non misurata. Il problema si pone anche sul perché proprio questa legge di speranza matematica. La risposta a questo è che se usiamo la probabilità per misurare l’utilità, come spiegato nel mio articolo, allora la coerenza richiede proprio questa legge. Naturalmente se l’utilità fosse misurata in qualsiasi altro modo, ad esempio in denaro, non dovremmo usare la speranza matematica.

Se non sussiste alcun significato nell’equivalente differenza di utilità, allora il denaro è un metodo buono come un altro per misurarla. Un significato può, tuttavia, essere fornito dal nostro metodo probabilistico, o mediante il tempo: ad esempio x – y = y – z se x per 1 giorno e z per 1 giorno = y per 2 giorni. Ma i periodi devono essere lunghi o associato con vite o persone diverse per evitare l’influenza reciproca. Questi due metodi portano allo stesso risultato? Potremmo provarlo con Bernoulli? Ovviamente no; Bernoulli valuta solo le probabilità. Un uomo potrebbe considerare una cosa buona e una cattiva equivalenti a 2 neutre, ma considerare 2 cattive semplicemente come pessime, che non vale la pena di assumere qualsiasi probabilità su di esse (Ma potrebbe essere fatto! No, ci dovrebbe essere una probabilità di non esserlo.) Credo che questo dimostra che il mio metodo di misurazione sia migliore; ma vale solo nell’insieme.

Tutto questo è solo un’idea, che senso c’è davvero in esso? Si può dire, credo, questo: –

Una teoria è un insieme di proposizioni che contiene p e q quando contiene p e q, e se

contiene una qualsiasi p contiene tutte le sue conseguenze logiche. L’interesse di tali insiemi viene dalla possibilità di adottarne una di queste come tutti noi crediamo opportuno.

Una teoria della probabilità è un insieme di numeri associati a coppie di proposizioni che obbediscono al calcolo delle probabilità. L’interesse di tale insieme deriva dalla possibilità di agire su di essi in modo coerente.

Naturalmente, il matematico si occupa solo della forma della probabilità; ma è abbastanza vero che si occupa solo di certezze.

Annunci

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger hanno fatto clic su Mi Piace per questo: